A new version of the retroharmonize R package – which is working with retrospective, ex post harmonization of survey data – was released yesterday after peer-review on CRAN. It allows us to compare opinion polling data from the Arab Barometer with the Eurobarometer and Afrorbarometer. This is the first version that is released in the rOpenGov community, a community of R package developers on open government data analytics and related topics.
If open data is the new gold, why even those who release fail to reuse it? We created an open collaboration of data curators and open-source developers to dig into novel open data sources and/or increase the usability of existing ones. We transform reproducible research software into research- as-service.
There are numerous advantages of switching from a national level of the analysis to a sub-national level comes with a huge price in data processing, validation and imputation, and the regions package aims to help this process.
Open data is like gold in the mud below the chilly waves of mountain rivers. Panning it out requires a lot of patience, or a good machine. I think we will come to as surprising and strong findings as Bellingcat, but we are not focusing on individual events and stories, but on social and environmental processes and changes.
101 Dalmatians was released in 1985 and 1991 which made thousands of families (in the U.S.) want to adopt one. The American Kennel Club reported that the annual number of Dalmatian puppies registered skyrocketed from 8,170 animals to 42,816.
Credibility is enhanced through cross-links between different data from different domains that “does not disprove” one another or that is internally consistent. If, say, data on taxable income goes in one direction and taxes in another, it is the reasoned reconciliation of the - alleged or real - inconsistency that will validate the comprehensive data set. So I am a great believer in broad, real-time observatories where not only the data capture, but the data reconciliation is automated, sometimes by means of a simple comparative statics analysis, in other cases maybe through quite elaborate artificial intelligence.
Facilitating private-public partnerships is one step to encourage the data community to work with valuable open data. However, transparency and a high level quality assurance step must be given. In a joint collaboration with data curators, developers, technical specialists and academics, the datasets should be retrieved, cleaned and assessed in order to deliver efficient, relevant and credible information. The constant monitoring and regulation as well as compliance with data security guidelines are indispensable.
Many interesting phenomena are difficult to quantify in a meaningful way and writing a catchy song with international appeal is probably more an art than a science. Nevertheless that should not deter us from trying as music, too, is bound by certain rules and regularities that can be researched.
Although there are a variety of open data sources available (and the numbers continue to increase), the availability of open algorithmic tools to interpret and communicate open data efficiently is lagging behind. One of the greatest challenges for open data in 2021 is to demonstrate how we can maximize the potential of open data by designing smart tools for open data analytics.
rOpenGov, Reprex, and other open collaboration partners teamed up to build on our expertise of open source statistical software development further: we want to create a technologically and financially feasible data-as-service to put our reproducible research products into wider user for the business analyst, scientific researcher and evidence-based policy design communities. Our new release will help with automated economic impact and environmental impact analysis.